리뷰/IT_책소개 / / 2023. 7. 23. 08:59

O'REILLY MLOps 실전 가이드 : 한빛미디어

반응형

MLOps 실전 가이드 표지

MLOps 실전 가이드 [ DevOps 와 MLOps의 이론과 실습부터 클라우드 컴퓨팅, AutoML, 엣지 컴퓨팅까지 ]

  노아 기프트, 알프레도 대자 지음

  이장후, 이일섭, 서기원 옮김

 

MLOps 란 ? (참조, 위키페디아,)

  Machine Learning Operations

  기계학습 모델을 안정적이고 효율적으로 배포하고 유지 관리하는 것을 목표로하는 패러다임 입니다.

  MLOps 는 Machine Learning Model 개발과 운영을 통합하여 ML 시스템을 자동으로 유지, 관리, 운영 합니다.

  MLOps 는 모델 생성 (소프트웨어 개발 생명 주기, 지속 적인 통합 / 지속적인 제공), 오케스트레이션 및 배포와의

                   통합에서 상태, 진단, 거버넌스 및 비즈니스 메트릭에 이르기까지 전체 수명 주기에 적용 됩니다.

  MLOps 는 Machine Learning, DevOps, Data Enginerring 이 모두 포함 됩니다..

  

 

wikipedia

MLOps는 다음 목표를 달성하기 위한 협업 및 커뮤니케이션 입니다.

  - Development and automation

  - Governance and compliance

  - Scalability

  - Collaboration

  - Monitoring and management

  - Reproducibility

 

책 구성 ::::::::::

  1장, MLOps 세상으로 초대

        이 장에서는 MLOps 가 세상에 나오게 된 이유와 그 정의와 DevOps 와 데이터 엔지니어링과 MLOps 와의 관계 등을

        예시와 사례를 통하여 설명하고 있습니다.

        이를 통하여 MLOps 가 어떠한 것인지 그리고 필요한 이유에 대해서 학습할 수 있습니다.        

  2장, MLOps를 시작하기 위한 기본 개념

        이 장에서는 MLOps에 필요한 기본 기술에 대해,

          Bash Shell 과 Command Line 에 대한 기초

              : WEBUI를 통하지 않고 터미널을 이용한 클라우드 시스템 이용을 위한 기초

          클라우드 컴퓨팅 시작 : ML 을 위한 클라우드 컴퓨팅

          최소한의 파이썬 학습 : 파이썬에 대한 소개

          프로그래머를 위한 수학 (파이썬)

          ML 최적화 (파이썬 예제)

        각각에 대한 소개 및 ML을 프로덕션 환경까지 끌어오는데 필요한 기본 지식들에 대해서 학습할 수 있습니다.

  3장, 컨테이너와 엣지 디바이스를 위한 MLOps

        이 장에서는 

          클라우드에서의 컨테이너 및 도커 소개

          도커 예제를 통한 컨테이너 생성 및 사용법 학습

          머신러닝 모델을 위한 컨테이너 및 배포

          엣지 디바이스에서의 ML 및 배포

        등에 대해서 학습할 수 있습니다.

  4장, 머신러닝 애플리케이션에 지속적 배포를 적용하기

        이 장에서는 지속적인 배포 프로세스 및 머신러닝 모델을 프로덕션 환경으로 배포하는 파이프라인을

         구축하는 전략이 무엇인지에 대해 학습할 수 있습니다.

  5장, AutoML과 KaizenML

         이 장에서는 AutoML 과 KaizenML 그리고 AutoML 과 KaizenML 의 관계에 대해서 학습 하고,

         애플 AutoML, 구글 AutoML, 애저 AutoML, AWS AutoML, 오픈 소스 AutoML 각각의 솔루션에 대해

         학습할 수 있습니다.

  6장, 모니터링과 로깅

         이 장에서는 모니터링과 로깅의 필요성과 예제를 통하여 로깅하는 법과 모니터링 하는 방법에 대해서

         학습할 수 있습니다.

  7장, AWS를 이용한 MLOps

         이 장에서는 AWS 클라우드에 대해서 소개하고, AWS를 이용한 MLOps에 대해 예제를 통하여 학습할 수 있습니다.

         또한, AWS가 제공하는 ML 리소스를 실제 기업들이 어떠한 형태로 사용하고 있는지 알 수 있습니다.

  8장, 애저 환경과 MLOps

         이 장에서는 MS의 애저를 이용한 모델학습, 파이프라인, 쿠버네티스 클러스터에 모델을 배포하는 것에 대해

         예제를 통하여 학습하고, 애저의 머신러닝과 관련한 중요한 기능들을 학습할 수 있습니다.

  9장, 구글 클라우드 플랫폼과 쿠버네티스

         이 장에서는 구글 클라우드 플랫폼에 대해서 학습하고 예제를 통하여 MLOps를 수행하는 방법을

         학습할 수 있습니다.

10장, 머신러닝 상호운용성

          머신러닝의 상호 운용성 이란 ? 특정 플랫폼에서 작성된 모델이 다른 여러 플랫폼에서도 작동되도록

          변환 하는 것을 의미합니다.

          이 장에서는 서로 다른 플랫폼에서도 작동할 수 있는 형태로 모델을 변환하는 것에 대해서 학습하고,

          머신러닝 모델에 범용성을 제공하는 ONNX 프레임워크에 대해서 학습할 수 있습니다.

11장, MLOps 명령줄 도구와 마이크로서비스 구축

          이 장에서는 파이썬을 이용한 명령줄 도구를 초기 부터 만드는 방법과 프레임워크를 통하여 도구를 생성하고

          자동화하는 방법에 대해서 학습할 수 있습니다.

12장, MLOps 실사례 연구

          이 장에서는 MLOps 실사례를 통하여 실전에서 주의해야할 점에 대해서 알아 봅니다.

          MLOps 구현을 위한 권장사항 그리고 MLOps 에 남은 중요한 과제에 대해서 몇 가지 소개하고 있습니다.

 

내용상 구성 :::::::::

이 책은, 내용 중간중간에 "Note" 를 통하여 부연 설명이 필요하거나 또는 알면 좋은 내용들에 대해 설명하고 있습니다.

장 마지막에는 "마치며"를 통하여 해당 장에서 저자가 알리고자 한 내용에 대해서 간략하게 정리하고 있습니다.

"연습해보기"에서 해당 장에서 학습한 내용을 되세겨 볼 수 있도록 하고

"생각해보기"를 통하여 학습자가 좀 더 고민 하고 학습해 볼 수 있는 주제를 던져주고 있습니다.

 

결론 ::::::::::

Machine Learning 이 더더욱 발전하고 사용되는 분야가 많아지기 시작하면서 무분별하게 도입하여 실패 하던 부분에 대해 SW 제품 관리를 용이하게 하는 DevOps 를 ML에 도입하게 되면서 MLOps 가 탄생하게 되었다고 합니다.

MLOps는 데이터 레이블링의 일관성을 위해 인프라를 구축하여 자동으로 운영되도록 하는 역활을 합니다.

즉, MLOps 는 ML에 대해서 지속적인 통합(CI)과 지속적인 배포(CD)를 운영 과정중에 도입하여 개발 주기를 단축 시기고,

ML 모델 배포 속도를 증가 시키고, 안정적인 출시를 가능하게 해줍니다.

지속성과 안정성에 도움이 되는 만큼 앞으로 더더욱 발전하고 널리 도입될 MLOps 에 대해서 소개하고 예제를 통하여 구축해 보고, 실제 도입된 사례들을 통하여 그 한계점과 앞으로의 발전 방향에 대해서 학습할 수 있는 책입니다.

많은 부분을 담으려다 보니 진행에서 조금 매끄럽지 않은 부분들도 있었습니다.

개인적으로는 기본적으로 알았으면 좋겠는 부분들에 대해서 정리된 곳은 다른 책을 볼 수 있도록 알려 주고 이 책에서는 좀 더 실전에 포커싱해서 지면을 좀 더 할애 했으면 좋았겠다는 생각이 듭니다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

https://www.hanbit.co.kr/store/books/look.php?p_code=B9385341956 

 

MLOps 실전 가이드

머신러닝 모델의 안정적인 운영과 성공적인 CI/CD를 위한 MLOps 엔지니어링 노하우

www.hanbit.co.kr

 

 

반응형
  • 네이버 블로그 공유
  • 네이버 밴드 공유
  • 페이스북 공유
  • 카카오스토리 공유